
dctap-python
Release 0.4.5

unknown

Feb 16, 2023

CONTENTS

1 DCTAP Model 3
1.1 Minimal application profile . 3

2 DCTAP Elements 5
2.1 Statement Template elements . 5
2.2 Shape elements . 17

3 Configuration 21
3.1 Default Shape Identifier . 21
3.2 Namespace Prefix Mappings . 21
3.3 Extra Elements . 21
3.4 Picklist Elements . 22
3.5 Picklist Item Separator . 23
3.6 Extra Value Node Types . 24
3.7 Element Aliases . 24

4 Design principles 25
4.1 Empty rows are ignored. 25
4.2 Keywords are normalized to lowercase. 25
4.3 The sequence of elements is normalized. 26
4.4 Non-DCTAP elements are ignored unless configured. 26
4.5 DCTAP elements are not repeatable. 28
4.6 Some variants of element names are tolerated. 28
4.7 Some element names are not allowed. 28
4.8 Shapes may be declared on separate rows. 29
4.9 Shape elements are set just once. 29
4.10 Elements belong either to shapes or to statement templates, not both. 30

5 Command-line tool 31
5.1 Initialize a config file . 31
5.2 View a TAP as TXT, JSON, or YAML . 31

6 DCTAP Glossary 35

Index 37

i

ii

dctap-python, Release 0.4.5

dctap is a Python package for parsing and normalizing spreadsheets or CSV Files that follow the model for DC Tabular
Application Profiles (DCTAP) (see installation instructions).

The dctap package includes a command-line tool for viewing the normalized contents of a given TAP in one of three
interchangeable formats: a verbose indented-TXT format (for human users) and YAML or JSON (for machines). The
tool checks a CSV File for potential violations of the DCTAP model and emits warnings or helpful suggestions.

An Application Profile describes models, vocabularies, and usage patterns that are expected or required to be found in
Instance Data. Developing a shared profile can help data providers capture consensus models on the “shape” of data
in a given domain and improve the coherence or interoperability of data in that domain. Developing that profile in a
simple spreadsheet, using DCTAP, can make it easier for people to participate in that process and use its results.

An Application Profile is also commonly used as a basis for data validation. While the dctap package itself does
not support validation (or any other operation touching on instance data), it can however serve as a preprocessor for
validation applications downstream. The normalized representation of a DCTAP CSV in JSON, for example, can be
converted into validation schemas expressed in Shape Expressions Language (ShEx) or Shapes Constraint Language
(SHACL).

dctap aims at catching a few of the more obvious inconsistencies in a given TAP – malformed regular expressions, the
use of literal datatypes with nonliteral values, and the like. These checks are documented below and in extensive unit
tests. The checks err on the side of tolerance, and error messages are meant as helpful hints to editors of early drafts.
Users are free to customize the DCTAP model with local extensions. Any part of a given TAP not recognized by dctap
as a built-in or customized feature of the DCTAP model is simply ignored.

CONTENTS 1

https://github.com/dcmi/dctap/blob/main/TAPprimer.md
https://github.com/dcmi/dctap/blob/main/TAPprimer.md
https://github.com/dcmi/dctap-python/
http://shexspec.github.io/primer/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://github.com/tombaker/tapshex/tree/main/tests
https://github.com/tombaker/tapshex/tree/main/tests

dctap-python, Release 0.4.5

2 CONTENTS

CHAPTER

ONE

DCTAP MODEL

Reality Metadata DCTAP Vocabulary
Entity Class

(Statements about an entity) Shape
Statement Statement Template
Predicate Predicate Constraint Property
Value Value Constraint

Instance Data, whether in the form of metadata records, databases, or networked graphs such as Wikidata, typically
makes statements about things “in the world” — books, their authors, viruses, buildings, and the like. A single State-
ment consists of a Property-Value pair. A set of statements about a distinct entity in the world is referred to here as
as a Description. Because a given body of Instance Data may describe multiple things in the world, it may be said to
consist of multiple Descriptions.

An Application Profile (here: a TAP) enumerates the properties and characterizes the values that are expected to be
found in a given body of Instance Data. In effect, an Application Profile is a description of a description – a notion
that is inevitably somewhat confusing. To minimize this confusion, the DCTAP Model names the things “in Instance
Data” differently from the things “in an Application Profile” (see table above).

In an Application Profile: - a Statement in Instance Data is described with a Statement Template; - a Property-Value
pair is described with a Predicate Constraint and Value Constraint; - a set of Statements in Instance Data about exactly
one real-world Entity (aka Description) is described in a Shape. Where a Description in Instance Data groups a set of
Statements, a Shape groups a set of Statement Templates.

The DCTAP Model consists of Shapes and Statement Templates, each of which consists of DCTAP Elements (a generic
term for the column headers in a CSV File).

Because the DCTAP Model was designed for compatibility with RDF and Linked Data, property constraints, shapes,
literal datatypes, and some value constraints are represented in a TAP with IRIs (or Compact IRIs).

1.1 Minimal application profile

In the DCTAP model, the simplest possible application profile consists of just one Statement Template in the context
of one Shape.

A Statement Template has, at a minimum, one propertyID element, and the existence of a Shape can be inferred, so
in practical terms, the simplest possible application profile is a list of just one property.

Note that if a shape identifier is not explicitly assigned in a CSV, a default identifier will be assigned. (This is discussed
in the the section shapeID / shapeLabel.) In “shape-less” applications, this shape identifier can simply be ignored.

3

dctap-python, Release 0.4.5

propertyID
http://purl.org/dc/terms/title
http://purl.org/dc/terms/publisher
https://schema.org/creator
http://purl.org/dc/terms/date

Interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID http://purl.org/dc/terms/title
Statement Template

propertyID http://purl.org/dc/terms/publisher
Statement Template

propertyID https://schema.org/creator
Statement Template

propertyID http://purl.org/dc/terms/date

4 Chapter 1. DCTAP Model

http://purl.org/dc/terms/title
http://purl.org/dc/terms/publisher
https://schema.org/creator
http://purl.org/dc/terms/date

CHAPTER

TWO

DCTAP ELEMENTS

In the DCTAP Model, a Shape groups a set of Statement Templates, each of which describes one type of Statement in
Instance Data about a specified Entity. Each of these two components (Shapes and Statement Templates) has its own
(extensible) set of DCTAP Elements:

2.1 Statement Template elements

2.1.1 propertyID / propertyLabel

The DCTAP model was designed for compatibility with the RDF model. In the RDF model, properties are identified
with IRIs, and this module will issues a warning if a property identifier, based on a superficial inspection, does not look
like an IRI.

Users not interested in compatibility with RDF, or users who are brainstorming a draft application profile and simply
need a placeholder, can safely ignore such a warning.

propertyID
dcterms:creator
height

Interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dcterms:creator
Statement Template

propertyID height

WARNING [default/propertyID] 'height' is not an IRI or Compact IRI.

Properties can have natural-language labels for use in displays and documentation.

propertyID propertyLabel
dct:creator Author or Creator

Interpreted as:

5

dctap-python, Release 0.4.5

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dct:creator
propertyLabel Author or Creator

2.1.2 mandatory / repeatable

In the DCTAP model, the expected cardinality of a property can be expressed with the elements mandatory and
repeatable. These elements take Boolean values that express “true” or “false” in one of two supported ways:

• The keywords true and false (case-insensitive).

• The integers 0 and 1.

These supported Boolean values are handled in the following ways:

• normalized as the Boolean class instances True and False in the internal Python object.

• normalized as true and false in the JSON and YAML outputs,

• displayed as True and False in the compact text output.

Note that empty values (ie, strings of length zero) are simply interpreted as unspecified and are not assigned an explicit
Boolean value.

propertyID mandatory repeatable
dc:creator 1 0
dc:date 0

This is interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dc:creator
mandatory True
repeatable False

Statement Template
propertyID dc:date
mandatory False

Any other value for either element — including an empty string for when the element is present but left blank — has
no effect on the default of None for each element and will be passed through as a string (or empty string) to the JSON
and YAML output.

An empty string value will result in an element not being displayed at all in the compact text output; in the verbose text
format, the value will be displayed as the default “None”.

propertyID mandatory repeatable
dc:creator N
dc:date Y

6 Chapter 2. DCTAP Elements

dctap-python, Release 0.4.5

This is displayed as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dc:creator
repeatable N

Statement Template
propertyID dc:date
mandatory Y

WARNING [default/repeatable] 'N' is not a supported Boolean value.
WARNING [default/mandatory] 'Y' is not a supported Boolean value.

The four possible combinations of mandatory with repeatable translate into the following minimum and maximum
values when cardinality is expressed as a range (where “-1” means “many”).

mandatory/repeatable min/max
mand repeat min max
False False 0 1
True False 1 1
False True 0 -1
True True 1 -1

Users of DCTAP in areas such as biology, where more expressive cardinality is required, may want to extend the model
with such ranges.

2.1.3 valueNodeType

The DCTAP model was designed for compatibility with the RDF model. In the RDF model, there are three types of
node: an IRI (or URI), a BNode, and a Literal.

Users not interested in compatibility with RDF can safely ignore this element.

dctap issues a warning if an unsupported value is provided (here: “Concept”).

propertyID valueNodeType
dcterms:title Literal
dcterms:creator URI
dcterms:subject Concept

Interpreted, with a warning, as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dcterms:title
valueNodeType literal

Statement Template
propertyID dcterms:creator

(continues on next page)

2.1. Statement Template elements 7

dctap-python, Release 0.4.5

(continued from previous page)

valueNodeType uri
Statement Template

propertyID dcterms:subject
valueNodeType concept

WARNING [default/valueNodeType] 'concept' is not a valid node type.

2.1.4 valueDataType

The DCTAP model was designed for compatibility with the RDF model. In the RDF model, literal values can be tagged
with a datatype that marks the value as a date, string, decimal number, and the like. The most commonly used datatypes
are defined in the W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes specification.

Because datatypes are identified by IRI, this module issues a warning if a non-IRI keyword is encountered. Users not
interested in compatibility with RDF can safely ignore such a warning.

propertyID valueDataType
dc:creator xsd:string
dct:date Date

Interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dc:creator
valueDataType xsd:string

Statement Template
propertyID dct:date
valueDataType Date

WARNING [default/valueDataType] 'Date' is not an IRI or Compact IRI.

Datatypes are used only with literal values, so if a node is of type “URI”, “IRI”, or “BNode” and any datatype is
provided, this will trigger a warning.

Note that if a URI is meant to be processed as a string, the node type should be “Literal”.

propertyID valueNodeType valueDataType
dcterms:creator IRI xsd:string
dcterms:subject BNODE xsd:string

Interpreted, with a warning, as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dcterms:creator
valueNodeType iri

(continues on next page)

8 Chapter 2. DCTAP Elements

https://www.w3.org/TR/xmlschema11-2/

dctap-python, Release 0.4.5

(continued from previous page)

valueDataType xsd:string
Statement Template

propertyID dcterms:subject
valueNodeType bnode
valueDataType xsd:string

WARNING [default/valueDataType] Datatypes are only for literals, so node type should not␣
→˓be 'iri'.
WARNING [default/valueDataType] Datatypes are only for literals, so node type should not␣
→˓be 'bnode'.

2.1.5 valueConstraint / valueConstraintType

A value constraint (valueConstraint) constrains the value associated with a property in specific ways according to
its type (valueConstraintType). A value constraint type may define a specific interpretation of a value constraint or
trigger specific techniques for processing the value constraint in an application downstream.

Value constraints with no value constraint types

When a value constraint is provided without a value constraint type, it is treated as a plain literal (unless valueNodeType
is “IRI” or “BNode”). Typically, this is intended to close the set of possible values to one specific value and no others.
In the following example, the value expected to be found with the property :securityLevel is “Confidential” (and no
other).

propertyID valueConstraint
:securityLevel Confidential

This is interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID :securityLevel
valueConstraint Confidential

Value constraint types with no value constraints

Because the value constraint type is intended to provide a context for interpreting a value constraint, a value constraint
type means nothing in the absence of a value constraint. If a value is provided for valueConstraintType but not for
valueConstraint, a warning will be emitted.

propertyID valueConstraintType
:securityLevel picklist

is interpreted as:

2.1. Statement Template elements 9

dctap-python, Release 0.4.5

DCTAP instance
Shape

shapeID default
Statement Template

propertyID :securityLevel
valueConstraintType picklist

WARNING [default/valueConstraint] Value constraint type ('picklist') but no value␣
→˓constraint.

Built-in value constraint types

The valueConstraintType element is intended to serve as an extension point for implementers of the DCTAP model.
As proof of concept, four commonly used value constraint types are supported by default:

Picklist

Value constraints of type “Picklist” are split into lists of literals (strings) by using the Picklist Item Separator, by
default whitespace. Lists are rendered in the text display as quoted strings, separated by commas and enclosed in
square brackets, and in the JSON and YAML outputs as list objects.

In the following example: - In the absence of valueConstraintType “picklist”, “red blue green” is a string value. -
With valueConstraintType “picklist”, “red blue green” is parsed on whitespace into a list. - With valueConstraintType
“picklist”, “yellow” is parsed on whitespace into a list with a single item.

propertyID valueConstraint valueConstraintType
:color red blue green
:color red blue green picklist
:color yellow picklist

This is interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID :color
valueConstraint red blue green

Statement Template
propertyID :color
valueConstraint ['red', 'blue', 'green']
valueConstraintType picklist

Statement Template
propertyID :color
valueConstraint ['yellow']
valueConstraintType picklist

If dctap is configured to use a comma as the Picklist Item Separator, the CSV

propertyID valueConstraint valueConstraintType
:color reddish brown, greenish yellow, bluish green picklist

10 Chapter 2. DCTAP Elements

dctap-python, Release 0.4.5

is interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID :color
valueConstraint ['reddish brown', 'greenish yellow', 'bluish green']
valueConstraintType picklist

Pattern

A value constraint type of Pattern means that the corresponding value constraint is to be interpreted as a (Python)
regular expression. If value constraints are empty or malformed as regular expressions they will be passed through,
untouched, to the text, JSON, and YAML outputs. If a pattern does not correctly compile as a Python regular expression
(or is empty), a warning will be emitted.

shapeID propertyID valueConstraint valueConstraintType
:ex1 :status approved_* Pattern
:ex2 :status Pattern
:ex3 :status approved_(* Pattern
:ex4 :status /approved_*/ Pattern
:ex5 :status ^2020 August Pattern

This is interpreted as:

DCTAP instance
Shape

shapeID :ex1
Statement Template

propertyID :status
valueConstraint approved_*
valueConstraintType pattern

Shape
shapeID :ex2
Statement Template

propertyID :status
valueConstraintType pattern

Shape
shapeID :ex3
Statement Template

propertyID :status
valueConstraint approved_(*
valueConstraintType pattern

Shape
shapeID :ex4
Statement Template

propertyID :status
valueConstraint /approved_*/
valueConstraintType pattern

Shape
(continues on next page)

2.1. Statement Template elements 11

dctap-python, Release 0.4.5

(continued from previous page)

shapeID :ex5
Statement Template

propertyID :status
valueConstraint ^2020 August
valueConstraintType pattern

WARNING [:ex2/valueConstraint] Value constraint type is 'pattern', but value constraint␣
→˓is empty.
WARNING [:ex3/valueConstraint] Value constraint type is 'pattern', but 'approved_(*' is␣
→˓not a valid regular expression.

IRIStem

A value of type IRIStem consists of one or more IRIs (or Compact IRIs) for matching against longer IRIs. For example,
“http://lod.nal.usda.gov/nalt/” is an IRIStem that matches “http://lod.nal.usda.gov/nalt/10129”.

More than one IRI stem can be provided by separating the IRIs with blank spaces. IRI stems are always output as a
list, even if just one IRI stem is provided.

The following example says that values of the “dcterms:subject” property are expected to be values of the NAL The-
saurus.

propertyID valueConstraint valueConstraintType
dcterms:subject http://lod.nal.usda.gov/nalt/ IRIStem

Interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dcterms:subject
valueConstraint ['http://lod.nal.usda.gov/nalt/']
valueConstraintType iristem

This module will superficially check whether the value constraint looks like an IRI and, if not, emit a warning.

propertyID valueConstraint valueConstraintType
dcterms:subject nalt IRIStem

Interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dcterms:subject
valueConstraint ['nalt']
valueConstraintType iristem

(continues on next page)

12 Chapter 2. DCTAP Elements

http://lod.nal.usda.gov/nalt/
http://lod.nal.usda.gov/nalt/10129
http://lod.nal.usda.gov/nalt/

dctap-python, Release 0.4.5

(continued from previous page)

WARNING [default/valueConstraint] Value constraint type is 'iristem', but 'nalt' does␣
→˓not look like an IRI or Compact IRI.

LanguageTag

A Language Tag is an abbreviated name for a natural language, such as fr for French or fr-CA for Canadian French.
Language tags are used to identify the language of a Literal. Standard sets of language tags serve as a controlled
vocabulary of identifiers for languages.

A value constraint of type “languageTag” is processed as a picklist of one or more language tags. Specifying language
tags in this manner means that the value associated with the property (in the example below, with “:status”) is expected
to be a string tagged with one of the language tags.

As with the value constraint type Picklist, a value constraint of type “LanguageTag” is split on whitespace unless
another list separator has been defined (see section Configuration).

A string with no whitespace is parsed into a list with just one string. As the rules for well-formed language tags are
quite complex, the module makes no attempt to check whether the language tags themselves are well-formed.

propertyID valueConstraint valueConstraintType
:status fr LanguageTag
:status fr fr-CA LanguageTag

This is interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID :status
valueConstraint ['fr']
valueConstraintType languagetag

Statement Template
propertyID :status
valueConstraint ['fr', 'fr-CA']
valueConstraintType languagetag

MinInclusive / MaxInclusive

A value constraint of type MinInclusive or MaxInclusive is used with a numeric value constraint (integer or float) to
indicate the minimum or maximum of a numeric value. “Inclusive” means that the value provided will also match:

• MinInclusive means “greater than or equal to”.

• MaxInclusive means “less than or equal to”.

Note that because the columns for value constraint and value constraint type are not repeatable in the base DCTAP
model, these value constraint types cannot be used to indicate ranges (eg, “-9 to -2”). Users who need to express value
ranges should consider extending DCTAP, for example as follows:

• With a single column that uses an application-specific syntax for ranges (eg, “1-6”).

• With two columns: one for MinInclusive and one for MaxInclusive.

2.1. Statement Template elements 13

dctap-python, Release 0.4.5

propertyID valueConstraint valueConstraintType
:temperature 9 MinInclusive
:temperature -9 MinInclusive
:temperature 12.2 MaxInclusive
:temperature -2 MaxInclusive
:temperature info@example.org MaxInclusive

This is interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID :temperature
valueConstraint 9
valueConstraintType mininclusive

Statement Template
propertyID :temperature
valueConstraint -9
valueConstraintType mininclusive

Statement Template
propertyID :temperature
valueConstraint 12.2
valueConstraintType maxinclusive

Statement Template
propertyID :temperature
valueConstraint -2
valueConstraintType maxinclusive

Statement Template
propertyID :temperature
valueConstraint info@example.org
valueConstraintType maxinclusive

WARNING [default/valueConstraint] Value constraint type is 'mininclusive', but
→˓'info@example.org' is not numeric.

Note:

• When viewed with the default text display (as above), non-numeric value constraints are flagged with warnings.

• When output as JSON, numeric values are coerced to integers or floats, as appropriate. Values that are not
coercable are passed through as strings:

{
"shapes": [

{
"shapeID": "default",
"statement_templates": [

{
"propertyID": ":temperature",
"valueConstraint": 9,
"valueConstraintType": "mininclusive"

},
(continues on next page)

14 Chapter 2. DCTAP Elements

mailto:info@example.org

dctap-python, Release 0.4.5

(continued from previous page)

{
"propertyID": ":temperature",
"valueConstraint": 12.2,
"valueConstraintType": "maxinclusive"

},
{

"propertyID": ":temperature",
"valueConstraint": "info@example.org",
"valueConstraintType": "maxinclusive"

}
]

}
]

}

MinLength / MaxLength

A value constraint of type MinLength or MaxLength defines a minimum or maximum length of a string value:

• MinLength means a string is at least X characters long.

• MaxLength means a string no longer than X characters long.

Note that because the columns for value constraint and value constraint type are not repeatable in the base DCTAP
model, these value constraint types cannot be used to indicate ranges (eg, “2 to 9”). Users who need to express value
ranges should consider extending DCTAP, for example as follows:

• With a single column that uses an application-specific syntax for ranges (eg, “1-6”).

• With two columns: one for MinInclusive and one for MaxInclusive.

propertyID valueConstraint valueConstraintType
:identifier 3 MinLength
:identifier 3.1 MinLength
:identifier -10 MaxLength
:identifier info@example.org MaxLength

This is interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID :identifier
valueConstraint 3
valueConstraintType minlength

Statement Template
propertyID :identifier
valueConstraint 3.1
valueConstraintType minlength

Statement Template
propertyID :identifier

(continues on next page)

2.1. Statement Template elements 15

mailto:info@example.org

dctap-python, Release 0.4.5

(continued from previous page)

valueConstraint -10
valueConstraintType maxlength

Statement Template
propertyID :identifier
valueConstraint info@example.org
valueConstraintType maxlength

WARNING [default/valueConstraint] Value constraint type is 'minlength', but '3.1' is not␣
→˓an integer.
WARNING [default/valueConstraint] Value constraint type is 'maxlength', but
→˓'info@example.org' is not an integer.

Values of type MinLength or MaxLength must be integers. Note:

• String and float values trigger warnings but are passed through, untouched, as string values.

• Negative integers do not trigger warnings, though they may not make sense.

Recall that the element valueDataType is used for general datatypes of literal values, such as “string” and “date”. The
element valueConstraint / valueConstraintType is used for more specific or rarely used types of value. While every
imaginable value constraint type could, in principle, have its own column in a tabular application profile, the resulting
tables would be overly wide and this specification would be more longer and difficult to use. Pairing value constraint
types with value constraints in just two columns helps keep tabular profiles more compact and concise.

Custom value constraint types

The built-in value constraint types are intended only as examples. Implementers are encouraged to define their own
types. If a valueConstraintType other than the four built-in types is provided — in the following example, a hypo-
thetical type markdown — dctap will simply pass the value through to the output, where any consuming applications
will be responsible for processing the type correctly.

propertyID valueConstraint valueConstraintType
:tutorial click [here](https://sphinx-rtd-tutorial.readthedocs.io) markdown

is interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID :tutorial
valueConstraint click [here](https://sphinx-rtd-tutorial.readthedocs.io)
valueConstraintType markdown

16 Chapter 2. DCTAP Elements

https://sphinx-rtd-tutorial.readthedocs.io

dctap-python, Release 0.4.5

2.1.6 valueShape

By specifing the Shape to which the Description of the resource represented by the Value — ie, the object of a Statement
in the Instance Data — is expected to conform, the valueShape element connects the shapes of a profile.

A value shape identifier may be a literal, blank node, or IRI, so no checks are performed on the value of this element.

The example below says:

• A book, as described according to the “:book” shape, has a creator.

• The creator of the book must be described in accordance with the “:person” shape.

• The “:person” shape says that the description of a person must include their name.

shapeID propertyID valueShape
:book dct:creator :person
:person foaf:name

Interpreted as:

DCTAP instance
Shape

shapeID :book
Statement Template

propertyID dct:creator
valueShape :person

Shape
shapeID :person
Statement Template

propertyID foaf:name

2.1.7 note

The “note” element is a catch-all field for annotating any aspect of a Shape or of a Statement Template.

Users requiring annotations that are more specific, for example to generate forms or displays, may want to extend the
DCTAP model with more precisely defined annotation elements.

2.2 Shape elements

There are two Shape elements. If the shapeID element is not used in a given DCTAP instance, it will be assigned a
default value (which can be customized in the config file - see Default Shape Identifier).

2.2. Shape elements 17

dctap-python, Release 0.4.5

2.2.1 shapeID / shapeLabel

In the DCTAP model, all Statement Templates are seen as grouped into Shapes, where a Shape is about a Description
in Instance Data — a set of statements about just one Entity in the real world.

A shape identifier is typically a plain Literal or an IRI .

If no shapeID is provided in the CSV or in a configuration file (see Configuration), a default shape identifier will be
assigned (“default”). A different default shape identifier may be configured, as described in the section Configuration.
For example:

propertyID
dcterms:creator
dcterms:date

Interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dcterms:creator
Statement Template

propertyID dcterms:date

Users with metadata about a single Entity, or whose downstream applications do not make use of shapes, can safely
ignore this default identifier.

A shapeID, once declared, will apply to any immediately subsequent rows where the shapeID is left blank. However,
a shape ID may be declared explicitly for any or for every row. When shape IDs are explicitly declared, they can
be presented in any arbitrary sequence without compromising their proper grouping as shapes. Declaring shape IDs
explicitly makes it possible to combine statement templates from multiple sources without regard for their sequential
order.

shapeID propertyID
:book dcterms:creator

dcterms:date
:author foaf:name
:book dcterms:language

Interpreted as:

DCTAP instance
Shape

shapeID :book
Statement Template

propertyID dcterms:creator
Statement Template

propertyID dcterms:date
Statement Template

propertyID dcterms:language
Shape

shapeID :author
(continues on next page)

18 Chapter 2. DCTAP Elements

dctap-python, Release 0.4.5

(continued from previous page)

Statement Template
propertyID foaf:name

If a shape identifier is not provided for the first rows processed but is provided for rows processed thereafter, only the
shape identifier for the first statement templates will be the default.

shapeID propertyID
dcterms:creator
dcterms:date

:author foaf:name

Interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dcterms:creator
Statement Template

propertyID dcterms:date
Shape

shapeID :author
Statement Template

propertyID foaf:name

Shapes can also have labels for use in displays and documentation.

shapeID shapeLabel propertyID
:book Book dcterms:creator

Interpreted as:

DCTAP instance
Shape

shapeID :book
shapeLabel Book
Statement Template

propertyID dcterms:creator

Note that a shape label does not function as a shape identifier. If no value is provided for shapeID it will be assigned a
(configurable) default. Only the assignment of a new shapeID will trigger the creation of a new shape. In the example
below, the second shapeLabel (“Libro”) is simply ignored.

shapeLabel propertyID
Book dcterms:creator
Libro dcterms:creator

Interpreted as:

DCTAP instance
Shape

(continues on next page)

2.2. Shape elements 19

dctap-python, Release 0.4.5

(continued from previous page)

shapeID default
shapeLabel Book
Statement Template

propertyID dcterms:creator
Statement Template

propertyID dcterms:creator

20 Chapter 2. DCTAP Elements

CHAPTER

THREE

CONFIGURATION

dctap has built-in default config settings (see defaults.py). By generating and editing a config file (see Initialize a
config file), the following defaults can be tweaked:

3.1 Default Shape Identifier

When shape identifiers are not provided in a CSV, a configurable default shape name is used (see section shapeID /
shapeLabel).

3.2 Namespace Prefix Mappings

As explained in the section View a TAP as TXT, JSON, or YAML, the Compact IRIs can be expanded into full IRIs by
replacing the short prefix with the full IRI of the namespace. The default configuration settings provide a starter set of
prefix mappings for frequently used namespaces. This list can be customized with locally defined namespaces or with
namespaces listed in services such as prefix.cc <http://prefix.cc/’_ or `Linked Open Vocabularies.

3.3 Extra Elements

By default, dctap ignores elements that are not part of the DCTAP model. As explained in the section “Non-DCTAP
elements are ignored unless configured.”, dctap can be configured to recognize extra elements as belonging either to a
shape or to a statement template. In the absence of such configuration, dctap has no basis for handling a given element
as a shape constraint or a statement constraint. Columns with unrecognized headers are simply ignored and passed
through, unchanged to text, JSON, or YAML output.

3.3.1 Extra shape elements

Extra CSV columns (elements) can be configured as shape constraints by enumerating the column headers (element
names) as follows:

extra_shape_elements:
- closed
- start

21

https://github.com/dcmi/dctap-python/blob/main/dctap/defaults.py
https://lov.linkeddata.es/dataset/lov/vocabs

dctap-python, Release 0.4.5

3.3.2 Extra statement template elements

Extra CSV columns (elements) can be configured as statement template elements by enumerating the column headers
(element names) as follows:

extra_statement_template_elements:
- min
- max

3.4 Picklist Elements

Some statement template elements can be configured as picklist elements. Cell values of picklist elements are split into
lists of multiple values on the basis of a configurable Picklist Item Separator. Value lists may be used or interpreted
differently in applications downstream of a DCTAP instance. The semantic implications of using list values with given
elements in particular applications is out of scope for DCTAP.

There are two cases where a list may be used as the value of an element:

• In the context of a specific statement constraint, a valueConstraint is provided together with a valueConstraint-
Type of “picklist”.

• An element has been declared in the config file as a picklist element - ie, all values in that given column are to
be treated as lists.

Note that the following types of statement template element cannot sensibly be configured for use with multiple values:

• Elements with numeric values: min, max

• Elements with Boolean values: closed, start, mandatory, repeatable

Elements used purely for annotation, such as shapeLabel, propertyLabel, and note, could in principle be configured
for use with multiple values (eg, with labels in multiple languages).

On the example of propertyID, given:

propertyID
dc:creator foaf:maker

In the following example, the value of propertyID would by default be interpreted as including an (illegal) space:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dc:creator foaf:maker

However, if dctap were so configured:

picklist_elements:
- propertyID

The value would be interpreted as a list:

22 Chapter 3. Configuration

dctap-python, Release 0.4.5

DCTAP instance
Shape

shapeID default
Statement Template

propertyID ['dc:creator', 'foaf:maker']

Note that a column can be either a regular column or a list column, but not both - ie, all cells in a given column will be
treated either as single values or as lists. In the following table:

propertyID
dc:creator,foaf:maker
dc:date

the value “dc:date” is treated as an item a list that has just one value:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID ['dc:creator', 'foaf:maker']
Statement Template

propertyID ['dc:date']

3.5 Picklist Item Separator

The value of a picklist element, a string, is parsed into a list of substrings on the basis of a list item separator, by default
a single space. This default separator can be changed to a different character, such as a comma or pipe (orbar). For
example, the element propertyID can be configured as a picklist element with a non-default list item separator, such
as a comma:

picklist_elements:
- propertyID
picklist_item_separator: ','

In this case, a propertyID containing a comma, such as:

propertyID
dc:creator,foaf:maker

would be parsed as a list with two values, as in the example shown in the section Picklist Elements.

Note, however, that because columns in CSVs are, by definition, separated by commas, a value with an embedded
comma, as above, must be enclosed in quotes. Exporting to CSV from an Excel spreadsheet yields a result such as the
following, where the multiple values in cell A2 are enclosed in quotes:

propertyID,valueNodeType
"dc:creator,foaf:maker",iri

3.5. Picklist Item Separator 23

dctap-python, Release 0.4.5

3.6 Extra Value Node Types

According to the DCTAP Primer, DCTAP supports the three node types of the graph-based data model as defined
in RDF 1.1 Concepts and Abstract Syntax: IRI, literal, and blank node. These are represented in a TAP with “IRI”,
“Literal”, and “BNode” as keywords for the element valueNodeType. Users can extend this list of supported keywords
with aliases for supported node types, such as “URI” (for “IRI”) or with combinations of node types that will be
understood by applications downstream.

For example, it is often necessary to say that the value is “not a literal” or, in other words, that it is an “IRI or bnode”.
It is of course possible to handle this by declaring valueNoteType to be a picklist element as described in the section
Picklist Elements above. It can however be convenient to coin extra node types to cover the most common use cases.
ShEx covers this case with the value “nonliteral”, while SHACL provides three additional pairwise combinations,
“sh:BlankNodeOrIRI”, “sh:BlankNodeOrLiteral”, and “sh:IRIOrLiteral”. One may also want to use “URI” instead of
“IRI”.

Any or all of these options can be activated by editing the configuration file accordingly:

extra_value_node_types:
- uri
- nonliteral
- IRIOrLiteral

3.7 Element Aliases

The width of CSVs can be reduced by creating aliases for headers. For aliases, case, whitespace, and punctuation are
ignored, but the canonical element names to which they map must exactly match those presented in the section DCTAP
Elements. Aliases will be expanded to the canonical element names in text, JSON, and YAML output. For example,
given the following configuration file (“dctap.yaml”):

prefixes:
":": "http://example.org/"
"dc:": "http://purl.org/dc/elements/1.1/"

extra_element_aliases:
"PropID": "propertyID"

The following table:

SID PropertyID Mand Rep
:book dc:creator 1 0

Is interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dc:creator

Aliases can also be used for translations of CSV headers into other languages.

24 Chapter 3. Configuration

https://www.dublincore.org/groups/application_profiles_ig/dctap_primer/
https://www.w3.org/TR/rdf11-concepts/#data-model
http://shex.io/shex-semantics/#nodeKind
https://www.w3.org/TR/shacl/#syntax-rule-nodeKind-in

CHAPTER

FOUR

DESIGN PRINCIPLES

The following principles govern how dctap processes a CSV file. Comments are welcome in the Github issue tracker.

4.1 Empty rows are ignored.

For the purposes of dctap, a row is “empty” if it does not have a value either for shapeID or for propertyID.

The CSV:

shapeID propertyID valueNodetype
book

literal
dc:creator uri

book dc:date literal

is interpreted as:

DCTAP instance
Shape

shapeID book
Statement Template

propertyID dc:creator
valueNodeType uri

Statement Template
propertyID dc:date
valueNodeType literal

4.2 Keywords are normalized to lowercase.

Value constraint types and value node types are normalized to lowercase. In the example below, “LITERAL”, “Lit-
eral”, and “lITERAL” are normalized to “literal”, while “Picklist”, “PICKLIST”, and “pICKLIST” are normalized to
“picklist”.

Property ID Value_Node_type Value_Constraint Value_Constraint_Type
dc:subject Literal Kish Uruk Nuzi Picklist
dc:subject LITERAL Kish Uruk Nuzi PICKLIST
dc:subject lITERAL Kish Uruk Nuzi pICKLIST

25

https://github.com/dcmi/dctap-python/issues

dctap-python, Release 0.4.5

Interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dc:subject
valueNodeType literal
valueConstraint ['Kish', 'Uruk', 'Nuzi']
valueConstraintType picklist

Statement Template
propertyID dc:subject
valueNodeType literal
valueConstraint ['Kish', 'Uruk', 'Nuzi']
valueConstraintType picklist

Statement Template
propertyID dc:subject
valueNodeType literal
valueConstraint ['Kish', 'Uruk', 'Nuzi']
valueConstraintType picklist

4.3 The sequence of elements is normalized.

In order to improve the consistency and readability of results, he order of DCTAP Elements will be normalized in text,
JSON, and YAML outputs irrespective of their sequence in a CSV,

valueShape propertyID shapeLabel shapeID
:author dcterms:creator Book :book

Interpreted as:

DCTAP instance
Shape

shapeID :book
shapeLabel Book
Statement Template

propertyID dcterms:creator
valueShape :author

4.4 Non-DCTAP elements are ignored unless configured.

Columns in a CSV that are not part of the DCTAP model are not automatically passed through to text, YAML, or JSON
output because unrecognized elements, in principle, bear an undefined relationship to Shapes and Statement Templates.

propertyID Status
dcterms:creator ignotus

Interpreted (with warnings enabled) as:

26 Chapter 4. Design principles

dctap-python, Release 0.4.5

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dcterms:creator

WARNING [csv/header] Non-DCTAP element 'Status' not configured as extra element.

Users wishing to use columns in their CSV that are not part of the DCTAP model, for example to specify that a
shape is “closed” or to specify “severity” of validation errors, can generate a configuration file (see section Initialize
a config file) and list their extra column headers in the configuration file under the sections “extra_shape_elements”
or “extra_statement_template_elements”. This will ensure that the extra columns will be passed through to the text,
JSON, and YAML outputs.

For example, if the configuration file includes:

extra_statement_template_elements:
- status

The text output, intended as an aid in debugging, includes the extra element but marks it as “extra” with brackets:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dcterms:creator
[status] ignotus

The JSON (or YAML) output includes the extra element “as is”:

{
"shapes": [

{
"shapeID": "default",
"statement_templates": [

{
"propertyID": "dcterms:creator",
"status": "ignotus"

}
]

}
]

}

4.4. Non-DCTAP elements are ignored unless configured. 27

dctap-python, Release 0.4.5

4.5 DCTAP elements are not repeatable.

Elements cannot be repeated, i.e., used as a header for more than one column in a CSV. This module ignores all but the
last column with a given header.

propertyID note note
dc:creator Writer of the report. Typically, the person listed on the cover page.

Interpreted as:

DCTAP instance
Shape

shapeID default
Statement Template

propertyID dc:creator
note Typically, the person listed on the cover page.

4.6 Some variants of element names are tolerated.

When processing CSV headers, the module ignores case, whitespace, and dashes and understores. All of the following
variants of “propertyID” are normalized to “propertyID”:

• “Property ID”

• “Property-ID”

• “Property_ID”

• “propertyid”

• “p r o p e r t y i d”

4.7 Some element names are not allowed.

Some keywords may not be used as names of elements (i.e., of CSV column headers):

• “state_list”

• “shape_warns”

• “state_warns”

• “shape_extras”

• “state_extras”

Note that in processing headers, the module ignores case, certain punctuation (dashes and understores), and whitespace,
so none of the following variants of “state_list” may be used as element names (see Some variants of element names
are tolerated.):

• “SC List”

• “SC-List”

• “SCLIST”

28 Chapter 4. Design principles

dctap-python, Release 0.4.5

4.8 Shapes may be declared on separate rows.

Shapes, if declared on a row separately from statement templates, will apply to all subsequent statement templates -
until a new shapeID is encountered. For example, given the following configuration file settings:

extra_shape_elements: - “closed” - “start”

The CSV:

shapeID propertyID valueNodetype closed start
book True True

dc:creator uri
dc:subject literal

author
foaf:name literal

is interpreted as:

DCTAP instance
Shape

shapeID book
[closed] True
[start] True
Statement Template

propertyID dc:creator
valueNodeType uri

Statement Template
propertyID dc:subject
valueNodeType literal

Shape
shapeID author
Statement Template

propertyID foaf:name
valueNodeType literal

4.9 Shape elements are set just once.

Values for shape elements are set from the row where a new shape is first encountered. Shape element values asserted
in subsequent rows are ignored. For example, given the following configuration file settings:

extra_shape_elements: - “closed” - “start”

The CSV:

shapeID propertyID valueNodetype closed start
book dc:creator uri True
book dc:date literal False False

is interpreted as:

4.8. Shapes may be declared on separate rows. 29

dctap-python, Release 0.4.5

DCTAP instance
Shape

shapeID book
[start] True
Statement Template

propertyID dc:creator
valueNodeType uri

Statement Template
propertyID dc:date
valueNodeType literal

4.10 Elements belong either to shapes or to statement templates, not
both.

A given element is defined either as an element of a shape or an element of a statement template. At one’s own risk,
one can configure a statement constraint element as an “extra shape element” (or vice versa), for example with:

extra_shape_elements:
- "note"

However, the results may be unexpected. The CSV:

shapeID propertyID note
book Note on a Shape

dc:creator Note on a Statement Template
author foaf:name Where does this note belong?

is interpreted as:

DCTAP instance
Shape

shapeID book
[note] Note on a Shape
Statement Template

propertyID dc:creator
note Note on a Statement Template

Shape
shapeID author
[note] Where does this note belong?
Statement Template

propertyID foaf:name
note Where does this note belong?

This ambiguity could be solved simply by coining an extra element, eg shapeNote:

extra_shape_elements:
- "shapeNote"

30 Chapter 4. Design principles

CHAPTER

FIVE

COMMAND-LINE TOOL

With the command-line tool dctap, one can:

5.1 Initialize a config file

The command dctap read works out of the box, with no options, but its behavior can be customized with an optional
configuration file (see Configuration).

5.1.1 Per-directory config files

The subcommand dctap init writes a starter configuration file, dctap.yaml, in the working directory. Thereafter,
whenever dctap read is run, the program will look in the working directory for dctap.yaml or, if it is not found, will
use built-in defaults.

cd /home/tombaker/myproject/data/
dctap init # Write default dctap.yaml
dctap read x.csv # Looks for dctap.yaml or reads defaults.

5.1.2 Global config files

Once generated, config files may be moved to arbitrary locations or even renamed. As described in the section View
a TAP as TXT, JSON, or YAML, config files at arbitrary locations may be referenced by their absolute or relative
pathnames with the option –config [path-to-configfile]. In this way, one central config file can be referenced from
anywhere on the file system or multiple config files can be created with alternative settings.

5.2 View a TAP as TXT, JSON, or YAML

The subcommand dctap read:

• reads a CSV file - alternatively, reads CSV file contents from stdin (eg, cat example.csv | dctap read -)

• sends a lightly normalized view of a TAP to stdout - by default, outputs TXT for on-screen debugging, without
showing prefixes - with option –json, outputs JSON, with namespace prefixes - with option –yaml, outputs
YAML, with namespace prefixes

The option –expand-prefixes expands any Compact IRI into a full IRI using prefixes found in the built-in defaults or
as overridden by a configuration file.

The file example.csv:

31

dctap-python, Release 0.4.5

shapeID propertyID valueNodeType
:a dcterms:creator IRI

can be read as TXT, with full IRIs, with dctap read –expand-prefixes example.csv:

DCTAP instance
Shape

shapeID http://example.org/a
Statement Template

propertyID http://purl.org/dc/terms/creator
valueNodeType iri

Or as JSON with dctap read –json example.csv:

{
"shapes": [
{
"shapeID": ":a",
"statement_templates": [
{
"propertyID": "dcterms:creator",
"valueNodeType": "iri"

}
]

}
],
"namespaces": {
":": "http://example.org/",
"dcterms:": "http://purl.org/dc/terms/"

}
}

Or as YAML, with full IRIs, with dctap read –yaml example.csv:

shapes:
- shapeID: :a
statement_templates:
- propertyID: dcterms:creator
valueNodeType: iri

namespaces:
':': http://example.org/
'dcterms:': http://purl.org/dc/terms/

32 Chapter 5. Command-line tool

dctap-python, Release 0.4.5

5.2.1 View warnings generated

As an aid for debugging, dctap read –warnings generates warnings for any obvious inconsistencies or errors found in
the TAP.

Specific consistency checks are explained in the descriptions of individual DCTAP elements; see section DCTAP Ele-
ments.

dctap read –warnings example2.csv sends warnings in plain text to stderr:

DCTAP instance
Shape

shapeID :a
Statement Template

propertyID dcterms:date
valueNodeType noodles

WARNING [:a/valueNodeType] 'noodles' is not a valid node type.

dctap read –warnings –json example2.csv includes warnings in the JSON dictionary:

{
"shapes": [
{
"shapeID": "default",
"statement_templates": [
{
"propertyID": "dcterms:date",
"valueNodeType": "noodles"

}
]

}
],
"namespaces": {
"dcterms:": "http://purl.org/dc/terms/"

},
"warnings": {
"default": {
"valueNodeType": [
"'noodles' is not a valid node type."

]
}

}
}

dctap read –warnings –yaml example2.csv includes warnings in the YAML output:

shapes:
- shapeID: default
statement_templates:
- propertyID: dcterms:date
valueNodeType: noodles

namespaces:
'dcterms:': http://purl.org/dc/terms/

warnings:
(continues on next page)

5.2. View a TAP as TXT, JSON, or YAML 33

dctap-python, Release 0.4.5

(continued from previous page)

default:
valueNodeType:

- "'noodles' is not a valid node type."

5.2.2 Read settings from nondefault config file

The option –configfile can point to non-default configuration files.

A starter configuration file can be generated with dctap init, as described in the section Initialize a config file. As
discussed in the section Configuration, settings such as the default shape name and namespace prefix mappings can be
tweaked in this file.

$ dctap read --configfile /home/tbaker/dctap.yaml example.csv

34 Chapter 5. Command-line tool

CHAPTER

SIX

DCTAP GLOSSARY

Application Profile
A description of the models, vocabularies, and usage patterns that are expected or required to be found in Instance
Data. An application profile that follows the DCTAP Model is documented in a TAP.

Blank Node
In RDF, a blank node is a unique identifier used, typically, within the local scope of a specific file or RDF store.
As described in RDF 1.1 Concepts and Abstract Syntax, a blank node is distinct both from an IRI and a Literal.
Blank nodes are of interest only to users or creators of RDF applications.

Compact IRI
An IRI represented by an abbreviated syntax in which a label associated with a namespace (the prefix) is fol-
lowed by a colon and by a local name which, taken together, can be expanded into a full IRI. For example, if
the prefix “dcterms:” is associated with the namespace “http://purl.org/dc/terms/”, then the prefixed name “dc-
terms:creator” can be expanded into “http://purl.org/dc/terms/creator”.

CSV File
A text file in which data values are delimited with commas or with other standard punctuation.

Datatype
As per RDF 1.1 Concepts and Abstract Syntax, a datatype is used to tag a Literal as being a specific type of date
or number or, by default, just a plain string. In RDF, datatypes are identified with IRIs.

DCTAP Element
One of a dozen or so labels defined in the DCTAP Model, such as propertyID, valueConstraint, and shapeLabel,
used as column headers in a CSV.

Description
A set of Statements in Instance Data used to describe just one real-world Entity.

Entity
Something, typically in the real world, that is described by Instance Data.

Instance Data
Records or, more recently, “graphs” that carry Descriptions, traditionally on paper but now, more typically, on
the Web.

IRI
An Internationalized Resource Identifier is a Web-based identifier that builds on and expands the Uniform Re-
source Identifier (URI), and is used, for our purposes, to provide the Properties, Entities, and other components
of Instance Data, with identity within the globally managed context of the Web.

Language Tag
A language tag is an abbreviated name for a natural language, such as fr for French or fr-CA for Canadian
French. Language tags are used to identify the language of a Literal. Standard sets of language tags serve as a
controlled vocabulary of identifiers for languages.

35

https://www.w3.org/TR/rdf11-concepts/#section-blank-nodes
http://purl.org/dc/terms/
https://www.w3.org/TR/rdf11-concepts/#section-Datatypes
https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

dctap-python, Release 0.4.5

Literal
Along with IRI and Blank Node, Literal is one of the three allowable node types defined in the abstract syntax
of RDF. For the purposes of DCTAP, it is close enough to think of literals as strings. Literals are used for values
such as strings, numbers, and dates. Interested readers can learn more about how literals relate to “lexical forms”,
Datatypes, and Language Tags by consulting RDF 1.1 Concepts and Abstract Syntax.

Picklist
A controlled list of valid options, one of which can be picked.

Picklist Element
A DCTAP Element, the values of which must be selected from a Picklist.

Property
A controlled term in Instance Data denoting an attribute of an Entity referenced in a Statement.

Predicate Constraint
A pattern in an Application Profile descriptive of how a given Property is expected to be used in Instance Data.
Also commonly referred to as a Property Constraint.

Shape
A component in an Application Profile (aka TAP) that holds a set of Statement Templates. In the now-superseded
DCMI Abstract Model of 2007, these were called Description Templates.

Statement
A property-value pair in Instance Data used in a Description to make claims about an Entity.

Statement Template
A component in an Application Profile that describes a Statement expected to be found in Instance Data.

TAP
A “TAP” (for “tabular application profile”) is a single instance of an Application Profile that follows the DCTAP
Model and is typically serialized as a spreadsheet or CSV File.

URI
See IRI .

Value
A value in Instance Data associated with a Property in the context of a Statement.

Value Constraint
A pattern in an Application Profile descriptive of Values expected in Instance Data.

Vocabulary
A set of Properties and other terms used in Instance Data and referred to in constraints defined in an Application
Profile. By convention, all properties referenced in a Dublin-Core-style Application Profile are defined and
documented separately from the profile itself.

36 Chapter 6. DCTAP Glossary

https://www.w3.org/TR/rdf11-concepts/#section-Graph-Literal
https://www.dublincore.org/specifications/dublin-core/abstract-model/

INDEX

A
Application Profile, 35

B
Blank Node, 35

C
Compact IRI, 35
CSV File, 35

D
Datatype, 35
DCTAP Element, 35
Description, 35

E
Entity, 35

I
Instance Data, 35
IRI, 35

L
Language Tag, 35
Literal, 36

P
Picklist, 36
Picklist Element, 36
Predicate Constraint, 36
Property, 36

S
Shape, 36
Statement, 36
Statement Template, 36

T
TAP, 36

U
URI, 36

V
Value, 36
Value Constraint, 36
Vocabulary, 36

37

	DCTAP Model
	Minimal application profile

	DCTAP Elements
	Statement Template elements
	propertyID / propertyLabel
	mandatory / repeatable
	valueNodeType
	valueDataType
	valueConstraint / valueConstraintType
	Value constraints with no value constraint types
	Value constraint types with no value constraints
	Built-in value constraint types
	Picklist
	Pattern
	IRIStem
	LanguageTag
	MinInclusive / MaxInclusive
	MinLength / MaxLength

	Custom value constraint types

	valueShape
	note

	Shape elements
	shapeID / shapeLabel

	Configuration
	Default Shape Identifier
	Namespace Prefix Mappings
	Extra Elements
	Extra shape elements
	Extra statement template elements

	Picklist Elements
	Picklist Item Separator
	Extra Value Node Types
	Element Aliases

	Design principles
	Empty rows are ignored.
	Keywords are normalized to lowercase.
	The sequence of elements is normalized.
	Non-DCTAP elements are ignored unless configured.
	DCTAP elements are not repeatable.
	Some variants of element names are tolerated.
	Some element names are not allowed.
	Shapes may be declared on separate rows.
	Shape elements are set just once.
	Elements belong either to shapes or to statement templates, not both.

	Command-line tool
	Initialize a config file
	Per-directory config files
	Global config files

	View a TAP as TXT, JSON, or YAML
	View warnings generated
	Read settings from nondefault config file

	DCTAP Glossary
	Index

